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Abstract

Gravity equations are widely used in international trade and migration studies to estimate the flow of

goods, services, and people between countries. However, existing tools for estimating gravity equations lack

the capability to account for directional effects accurately. This brief note addresses this gap by formally

demonstrating that utilizing a full set of fixed effects to incorporate multilateral resistance yields identical

estimates for both outflow and inflow dependent variables in gravity models.
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1 Brief Introduction

Gravity equations are consistently estimated using a comprehensive set of fixed effects to control for

multilateral resistances, as highlighted by [Weidner and Zylkin, 2021]. This approach effectively

absorbs state-specific effects, allowing for a causal interpretation of estimation results. However, a

critical challenge in interpreting these results has often been overlooked. The estimated coefficients

capture changes in joint flows of the dependent variable (such as trade or migration), rather than dis-

tinguishing directional effects. This limitation arises from the utilization of fixed effects and within-

transformations of all variables in the specification. Consequently, once these fixed effects are in-

tegrated, and the underlying dyadic panel is perfectly balanced, policy variables will exert the same

effect on both inflows and outflows. This note formally demonstrates that distinguishing effects on in-

and outflows is not achievable with the prevailing techniques in the gravity literature. Thus, caution

is warranted when interpreting gravity effects directionally, as separate estimates for in- and outflows

emerge solely from an unbalanced panel rather than the distinction of these directions.

2 Statement of the Problem

To show the directional symmetry problem of gravity estimation in a tractable context, we can start by

stating a simple gravity equation of flows between i and j such that

yi,j = exp[βxi,j + δi + δj]ηi,j, (1)

where xi,j defines the policy variable of interest, δi and δj the origin and destination fixed effects.

In order to account for these fixed effects, we create within transformations of our variables. Since

equation (1) applies two fixed effects, the required transformation has to account for both group av-

erages, i.e., double demeaning. For any variable ai,j , we can define the within transformation as

ãi,j = ai,j − [āi,· + ā·,j] + ¯̄a, where āi,· = J−1 ∑
j ai,j and ¯̄a = [I × J ]−1 ∑

i

∑
j ai,t. Transforming
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variables in equation (1) accordingly leaves us with

ỹi,j = exp[βx̃i,j]η̃i,j, (2)

where the model is either estimated in its multiplicative form through a GLM procedure such as FE-

PPML, or by log-linearizing and using OLS. With the latter specification, we can show that the within

transformation required to account for the state specific fixed effects lead to the following observation:

Lemma 1 For any pair-wise varying dummy it holds that x̃i,j = x̃j,i.

The within transformation yields a demeaned variable that now only holds pairwise information.

Consequently, we deprive our policy variable of state specific information. Hence, the transformed

policy variable defines whether a given i × j-pair has a different policy regime, without providing

information on which of the two states has implemented the policy. Recall that yout
i,j = yin

j,i, which then

implies that also ỹout
i,j = ỹin

j,i we can follow:

Corollary 1.1 If Lemma 1 holds, we estimate the same specification for yout
i,j and yin

i,j and therefore

obtain the same β̂ for both dependent variables.

This finding leaves us with interpretative challenges. Rather than estimating the effects of the tax

policy on in- and out-migration, we estimate the effect of either one state of the i×j-pair implementing

the policy on the pair’s migration flow.

3 Proof

Proof of Lemma 1: Assume a dummy variable xi,j = zimi,j ∈ [0, 1], where zi, mi,j ∈ [0, 1]. This

implies that I−1 ∑
i xi,j, J−1 ∑

j xi,j ∈ [0, 1]. Further, assume that I = J . Hence, x̄i,·, x̄·,j ∈ [0, 1].

Show that

xi,j − [x̄i,· + x̄·,j] = xj,i − [x̄j,· + x̄·,i].
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There are several cases to consider. Since our dummy variable is pairwise varying, we have four dif-

ferent possible combinations of xi,j and xj,i.1

Case 1: xi,j = 1, xj,i = 0 where zi = 1, zj = 0, mi,j = 1.

Here, we have that x̃i,j = 1 − [x̄i,· + x̄·,j] + ¯̄x and x̃j,i = 0 − [x̄j,· + x̄·,i] + ¯̄x. First, we note that since

xj,i = 0 ∀ i we have x̄j,· = 0. Similarly, since xi,j = 1 ∀ j we have x̄i,· = 1. As mi,j = 1 ∀ i, j, we

further have x̄·,j = x̄·,i ∀ i, j. Therefore, we can write

x̃i,j = 1 − [1 + x̄·,i] + ¯̄x

= 0 − [0 + x̄·,i] + ¯̄x = x̃j,i

Case 2: xi,j = 0, xj,i = 1 where zi = 1, zj = 0, mi,j = 1.

We can show that x̃i,j = x̃j,i, analogously to the case above, with i, j flipped.

Case 3: xi,j = 1, xj,i = 1 where zi = 1, zj = 1, mi,j = 1.

First, we note that xi,j = xj,i = 1 ∀ i, j. Therefore, we have x̄i,· = x̄j,· = 1 ∀ i, j. Analogously to

before, as mi,j = 1 ∀ i, j, we further have x̄·,j = x̄·,i ∀ i, j. Therefore, we can state

x̃i,j = 1 − [1 + x̄·,i] + ¯̄x = 1 − [1 + x̄·,i] + ¯̄x = x̃j,i

Case 4: xi,j = 0, xj,i = 0 where zi = 0, zj = 0, mi,j = 1.

Again, first, we note that xi,j = xj,i = 0 ∀ i, j. Therefore, we have x̄i,· = x̄j,· = 0 ∀ i, j. And again, as

mi,j = 1 ∀ i, j, we further have x̄·,j = x̄·,i ∀ i, j. Similarly to above, we have

x̃i,j = 0 − [0 + x̄·,i] + ¯̄x = 0 − [0 + x̄·,i] + ¯̄x = x̃j,i

Case 5: mi,j = 0, therefore xi,j = xj,i = xi,i.

It follows, immediately, that x̃i,j = x̃i,i = x̃j,i.

1The proof is very straight forward, as the pairwise moving property does not come from a definition of adoption
differentials but rather from the interstate migration dummy mi,j .
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Note that the simplicity of this proof comes from the fact that xi,j,t only varies in j due to mi,j . If

we however were to define a different dummy x∗
i,j,t that varies in j by definition, this proof becomes

a bit more involved. Let us define x∗
i,j,t = 1 iff zi > zj . In this case, we design the bilateral adoption

dummy as a non-linear combination of unilateral policy variables zi and zj . The main reason we do not

use such a dummy in our main specification are its implicit assumptions. It must hold that zi = zj = 0

and zi = zj = 1 both imply x∗
i,j,t = 0. Note that zi = 0, zj = 1 also implies x∗

i,j,t = 0. Hence, the

interpretation of such a variable becomes challenging. Nonetheless, we can show, that for x∗
i,j,t the

same Lemma 1 holds.

Proof of Lemma 1 for x∗
i,j,t: Assume a dummy variable x∗

i,j = {0, 1} such that I−1 ∑
i x∗

i,j, J−1 ∑
j x∗

i,j ∈

[0, 1]. Further, assume that I = J . Hence, x̄∗
i,·, x̄∗

·,j ∈ [0, 1]. Show that

x∗
i,j − [x̄∗

i,· + x̄∗
·,j] = x∗

j,i − [x̄∗
j,· + x̄∗

·,i].

There are several cases to consider. Since our dummy variable is pairwise varying, we have four dif-

ferent possible combinations of x∗
i,j and x∗

j,i.

Case 1: x∗
i,j = 1, x∗

j,i = 0 where zi = 1, zj = 0.

Here, we have that x̃∗
i,j = 1 − [x̄∗

i,· + x̄∗
·,j] + ¯̄x∗ and x̃∗

j,i = 0 − [x̄∗
j,· + x̄∗

·,i] + ¯̄x∗. First, we note that

since x∗
j,i = 0 ∀ i we have x̄∗

j,· = 0. Similarly, as x∗
j,i = 0 ∀ j we have x̄∗

·,i = 0.2 It follows directly that

x̃∗
j,i = 0 − [x̄∗

j,· + x̄∗
·,i] + ¯̄x∗ = ¯̄x∗.

Next, we notice that, by design of our dummy, we have x̄∗
·,j = 1 − x̄∗

i,· where we must consider

three different cases.

Case 1.1: x̄i,·, x̄·,j < 1. Then, we have x̃∗
i,j = 1− [x̄∗

i,· +(1− x̄∗
i,·)]+ ¯̄x∗ = ¯̄x∗. Notice, that x̄∗

i,· > x̄∗
·,j

iff
∑

i zi >
∑

j zj .

2Note that this is only possible due to the dummy’s specific structure where x∗
i,j = 0 if zi = zj = 1 or zi = zj = 0
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Case 1.2: x̄∗
i,· = 1 where

∑
i zi = 1.3 Since x̄∗

·,j = 1−x̄∗
i,· = 0, we have x̃∗

i,j = 1−[x̄∗
i,·+0]+¯̄x∗ = ¯̄x∗.

Case 1.3: x̄∗
·,j = 1 where

∑
j zj = 1.4 Since x̄∗

·,j = 1 − x̄∗
i,· = 1 gives us that x̄∗

i,· = 0, we have

x̃∗
i,j = 1 − [0 + (1 − 0)] + ¯̄x∗ = ¯̄x∗.

Therefore, we can write x̃∗
i,j = x̃∗

j,i = ¯̄x∗ with x∗
i,j − [x̄∗

i,· + x̄∗
·,j] = x∗

j,i − [x̄∗
j,· + x̄∗

·,i] = 0.

Case 2: x∗
i,j = 0, x∗

j,i = 1 where zi = 0, zj = 1.

This case follows the same argument as the one above. We have x̃∗
i,j = 0 − [x̄∗

i,· + x̄∗
·,j] + ¯̄x∗ = ¯̄x∗

as x∗
i,j = 0 ∀ i, j. We also have x̄∗

·,i = 1 − x̄∗
j,· and therefore x̃∗

j,i = 1 − [x̄∗
j,· + (1 − x̄∗

j,·)] + ¯̄x∗ = ¯̄x∗.

Therefore, we can again write x̃∗
i,j = x̃∗

j,i = ¯̄x∗ with x∗
i,j − [x̄∗

i,· + x̄∗
·,j] = x∗

j,i − [x̄∗
j,· + x̄∗

·,i] = 0.

Case 3: x∗
i,j = 0, x∗

j,i = 0 where zi = zj = 0.

First, we note that x∗
i,j = x∗

j,i = 0 ∀ i, j. Therefore, we have x̄∗
i,· = x̄∗

j,· = 0. Consider k, l ̸= i, j

and recall that 1x∗
k,l

(zk > zl). Hence, if ∃ k s.t. zk > zl, we have x̄∗
·,i > 0 ∀ i. Therefore, we have

x̄∗
·,i = x̄∗

·,j ≥ 0. It follows that x̃∗
i,j = 0 − [0 + T̄·,j] + ¯̄x∗ = x̄∗

·,j + ¯̄x∗ ∀ j.

Therefore, we can write x̃∗
i,j = x̃∗

j,i = x̄∗
·,i+¯̄x∗ = x̄∗

·,j +¯̄x∗ with x∗
i,j −[x̄∗

i,·+x̄∗
·,j] = x∗

j,i−[x̄∗
j,·+x̄∗

·,i] =

0.

Case 4: x∗
i,j = 0, x∗

j,i = 0 where zi = zj = 1.

Similar to the case above, we note that x∗
i,j = x∗

j,i = 0 ∀ i, j. Therefore, we have x̄∗
·,j = x̄∗

·,i = 0 (as

already shown in Case 2). Further, note that, as zi = 1, J−1 ∑
j x∗

i,j ≥ 0 ∀ j. Hence x̄∗
i,· = x̄∗

j,· ≥ 0. It

3The extreme case represents a situation where all states adopt the tax.
4The extreme case represents a situation where no state adopts the tax.
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follows that x̃∗
i,j = 0 − [x̄∗

i,· + 0] + ¯̄x∗ = x̄∗
i,· + ¯̄x∗ ∀ i.

Therefore, we can write x̃∗
i,j = x̃∗

j,i = x̄∗
i,·+¯̄x∗ = x̄∗

j,·+¯̄x∗ with x∗
i,j −[x̄∗

i,·+x̄∗
·,j] = x∗

j,i−[x̄∗
j,·+x̄∗

·,i] =

0.
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